Abstract
The main objective of this work is the nonparametric estimation of the regression function with correlated errors when observations are missing in the response variable. Two nonparametric estimators of the regression function are proposed. The asymptotic properties of these estimators are studied; expresions for the bias and the variance are obtained and the joint asymptotic normality is established. A simulation study is also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.