Abstract
Parameters of Gaussian multivariate models are often estimated using the maximum likelihood approach. In spite of its merits, this methodology is not practical when the sample size is very large, as, for example, in the case of massive georeferenced data sets. In this paper, we study the asymptotic properties of the estimators that minimize three alternatives to the likelihood function, designed to increase the computational efficiency. This is achieved by applying the information sandwich technique to expansions of the pseudo-likelihood functions as quadratic forms of independent normal random variables. Theoretical calculations are given for a first-order autoregressive time series and then extended to a two-dimensional autoregressive process on a lattice. We compare the efficiency of the three estimators to that of the maximum likelihood estimator as well as among themselves, using numerical calculations of the theoretical results and simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.