Abstract

We present the asymptotic transitions from microscopic to macroscopic physics, their computational challenges and the asymptotic-preserving (AP) strategies to compute multiscale physical problems efficiently. Specifically, we will first study the asymptotic transition from quantum to classical mechanics, from classical mechanics to kinetic theory, and then from kinetic theory to hydrodynamics. We then review some representative AP schemes that mimic these asymptotic transitions at the discrete level, and hence can be used crossing scales and, in particular, capture the macroscopic behaviour without resolving the microscopic physical scale numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call