Abstract

This paper presents a novel finite-and-quantized output feedback asymptotic tracking control method for a general class of continuous-time linear time-invariant systems. First, we construct a finite quantizer with time-varying thresholds and design a pole placement control law that exclusively utilizes the finite-and-quantized output signal and an external reference signal. Then, we establish the boundedness of all closed-loop signals and prove the asymptotic convergence of the output tracking error to zero. The proposed method combines the advantages of classical pole placement control technique and finite quantization feedback technique. It not only reduces the requirement for feedback information compared with existing tracking control methods but also effectively handles unstable poles and zeros in controlled systems, thereby achieving asymptotic output tracking. Finally, we provide a representative example to validate the effectiveness and new features of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.