Abstract

Let $\Theta$ be a parameter space included in a finite-dimensional Euclidean space and let $A$ be a half-space. Suppose that the maximum likelihood estimate $\theta_n$ of $\theta$ is not in $A$ (otherwise, replace $A$ by its complement) and let $\Delta$ be the maximum log likelihood (at $\theta_n$) minus the maximum log likelihood over the boundary $\partial A$. It is shown that under some conditions, uniformly over all half-spaces $A$, either the posterior probability of $A$ is asymptotic to $\Phi(-\sqrt{2\Delta}\,)$ where $\Phi$ is the standard normal distribution function, or both the posterior probability and its approximant go to 0 exponentially in $n$. Sharper approximations depending on the prior are also defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.