Abstract

We prove an asymptotic formula for the number of k-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of d-regular k-uniform hypergraphs on n vertices provided that dn ≤ c(n/k) for a constant c > 0, and 3 ≤ k < n^c for any C < 1/9. Our results relate the degree sequence of a random k-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.