Abstract
We study the asymptotic law of a network of interacting neurons when the number of neurons becomes infinite. The dynamics of the neurons is described by a set of stochastic differential equations in discrete time. The neurons interact through the synaptic weights that are Gaussian correlated random variables. We describe the asymptotic law of the network when the number of neurons goes to infinity. Unlike previous works which made the biologically unrealistic assumption that the weights were i.i.d. random variables, we assume that they are correlated. We introduce the process-level empirical measure of the trajectories of the solutions into the equations of the finite network of neurons and the averaged law (with respect to the synaptic weights) of the trajectories of the solutions into the equations of the network of neurons. The result (Theorem 3.1 below) is that the image law through the empirical measure satisfies a large deviation principle with a good rate function. We provide an analytical expression of this rate function in terms of the spectral representation of certain Gaussian processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.