Abstract
Summary. Boundary layer techniques are used to examine the dissipative decay of an internal oscillation that is a member of the inviscid spectrum of normal modes for a rotating fluid shell stratified under a radially directed gravitational field. A formula is derived for the decay factor on the so-called homogeneous spin-down time-scale. Estimates are obtained for the size of the decay factor as a function of wavelength, a function of the frequency and a function of a parameter A which measures the ratio of the stratification strength to the rotation strength. It is shown that all modes decay on the spin-down time-scale. The results are interpreted in the context of a model for the Earth's fluid core. It is observed that the presence of regions of unstable stratification may increase the decay rate for oscillations at frequencies less than twice the rotation frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.