Abstract

We study asymptotic behavior of stochastic approximation procedures with three main characteristics: truncations with random moving bounds, a matrix-valued random step-size sequence, and a dynamically changing random regression function. In particular, we show that under quitemild conditions, stochastic approximation procedures are asymptotically linear in the statistical sense, that is, they can be represented as weighted sums of random variables. Therefore, a suitable formof the central limit theoremcan be applied to derive asymptotic distribution of the corresponding processes. The theory is illustrated by various examples and special cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.