Abstract
In this paper, we are interested in a model derived from the 1‐D Keller‐Segel model on the half line x > as follows: urn:x-wiley:mma:media:mma4189:mma4189-math-0001 where l is a constant. Under the conserved boundary condition, we study the asymptotic behavior of solutions. We prove that the problem is always globally and classically solvable when the initial data is small, and moreover, we obtain the decay rates of solutions. The paper mainly deals with the case of l > 0. In this case, the solution to the problem tends to a conserved stationary solution in an exponential decay rate, which is a very different result from the case of l < 0. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.