Abstract

We derive the macroscopic laws that govern the evolution of the density of particles in the exclusion process on the Sierpinski gasket in the presence of a variable speed boundary. We obtain, at the hydrodynamics level, the heat equation evolving on the Sierpinski gasket with either Dirichlet or Neumann boundary conditions, depending on whether the reservoirs are fast or slow. For a particular strength of the boundary dynamics we obtain linear Robin boundary conditions. As for the fluctuations, we prove that, when starting from the stationary measure, namely the product Bernoulli measure in the equilibrium setting, they are governed by Ornstein-Uhlenbeck processes with the respective boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.