Abstract
The electroremediation process is an efficient method for removing pollutants from clayey soils. We model this process in kaolinite clays considering three scales—nano, micro and macro—under the assumption of a stratified geometry in conjunction with more realistic Danckwerts’ boundary conditions imposed at the electrodes. The resulting multiscale model is a coupled system of nonlinear partial differential equations. We derive analytical solutions of the macroscopic equations considering the asymptotic behavior of strongly convective and diffusive regimes. We perform numerical simulations of different scenarios for the electroremediation using the Galerkin finite element method together with a staggered algorithm and the Newton–Raphson method. We validate the accuracy of the proposed algorithm by comparing the discrete solutions to the analytical ones. Finally, we explore and discuss optimal scenarios for the electroremediation process depending on the input values of pH, electrical current, and mass inflow using dimensionless numbers defined from the analytical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.