Abstract
In the linear theory of elasticity, an arbitrary crack is represented as a combination of three: longitudinal shear cracks, transverse shear cracks, and normal tear cracks that do not interact with each other. In the nonlinear theory, for some types of strain energy potentials, a finite longitudinal shear crack necessarily generates a strain in the transverse plane. This article proposes an asymptotic description of the deformed state of a crack in the transverse plane under the action of a finite longitudinal shear in an incompressible material with a Mooney–Rivlin potential, and an assessment is made of the effect of additional deformation on the condition of the start of a crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.