Abstract

We study the effect of arrival model uncertainties on the optimal routing in a system of parallel queues. For exponential service time distributions and Bernoulli routing, the optimal mean system delay generally depends on the interarrival time distribution. Any error in modeling the arriving process will cause a model-based optimal routing algorithm to produce a mean system delay higher than the true optimum. In this paper, we present an asymptotic analysis of the behavior of this error under heavy traffic conditions for a general renewal arrival process. An asymptotic analysis of the error in optimal mean delay due to uncertainties in the service time distribution for Poisson arrivals was reported in Ref. 6, where it was shown that, when the first moment of the service time distribution is known, this error in performance vanishes asymptotically as the traffic load approaches the system capacity. In contrast, this paper establishes the somewhat surprising result that, when only the first moment of the arrival distribution is known, the error in optimal mean delay due to uncertainties in the arrival model is unbounded as the traffic approaches the system capacity. However, when both first and second moments are known, the error vanishes asymptotically. Numerical examples corroborating the theoretical results are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.