Abstract
Discretized time harmonic Maxwell’s equations are hard to solve by iterative methods, and the best currently available methods are based on domain decomposition and optimized transmission conditions. Optimized Schwarz methods were the first ones to use such transmission conditions, and this approach turned out to be so fundamentally important that it has been rediscovered over the last years under the name sweeping preconditioners, source transfer, single layer potential method and the method of polarized traces. We show here how one can optimize transmission conditions to take benefit from the jumps in the coefficients of the problem, when they are aligned with the subdomain interface, and obtain methods which converge for two subdomains in certain situations independently of the mesh size, which would not be possible without jumps in the coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.