Abstract

BackgroundMalaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries. Plasmodium falciparum continues to develop resistance to currently available anti-malarial drugs, posing great problems for malaria elimination. This study evaluates the frequencies of asymptomatic infection and multidrug resistance-1 (mdr-1) gene mutations in parasite isolates, which form the basis for understanding persistently high incidence in South West, Nigeria.MethodsA total of 535 individuals aged from 6 months were screened during the epidemiological survey evaluating asymptomatic transmission. Parasite prevalence was determined by histidine-rich protein II rapid detection kit (RDT) in healthy individuals. Plasmodium falciparum mdr-1 gene mutations were detected by polymerase chain reaction (PCR) followed by restriction enzyme digest and electrophoresis to determine polymorphism in parasite isolates. Sequencing was done to confirm polymorphism. Proportions were compared using Chi-square test at p value < 0.05.ResultsMalaria parasites were detected by RDT in 204 (38.1%) individuals. Asymptomatic infection was detected in 117 (57.3%) and symptomatic malaria confirmed in 87 individuals (42.6%). Overall, individuals with detectable malaria by RDT was significantly higher in individuals with symptoms, 87 of 197 (44.2%), than asymptomatic persons; 117 of 338 (34.6%), p = 0.02. In a sub-set of 75 isolates, 18(24%) and 14 (18.6%) individuals had Pfmdr1 86Y and 1246Y mutations.ConclusionsThere is still high malaria transmission rate in Nigeria with higher incidence of asymptomatic infections. These parasites harbour mutations on Pfmdr1 which contribute to artemisinin partner drug resistance; surveillance strategies to reduce the spread of drug resistance in endemic areas are needed to eliminate the reservoir of malaria parasites that can mitigate the eradication of malaria in Nigeria.

Highlights

  • Malaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries

  • To curb the spread of drug resistance and for effective malaria control, it is necessary to study the genetic backgrounds of parasite isolates that circulate in asymptomatic infections, which are often exposed to sub-therapeutic doses of anti-malarial drugs, as these polymorphisms alter parasite susceptibility to artemisinin combination treatment (ACT) [1]

  • This study aims to determine frequencies of Pfmdr1 mutations in parasite isolates and intensities of asymptomatic malaria transmission in an endemic area of Nigeria

Read more

Summary

Introduction

Malaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries. This study evaluates the frequencies of asymptomatic infection and multidrug resistance-1 (mdr-1) gene mutations in parasite isolates, which form the basis for understanding persistently high incidence in South West, Nigeria. Increasing drug resistance in Plasmodium falciparum in Southeast Asia and Africa mitigates the use of some available artemisinin combination drugs for effective. To curb the spread of drug resistance and for effective malaria control, it is necessary to study the genetic backgrounds of parasite isolates that circulate in asymptomatic infections, which are often exposed to sub-therapeutic doses of anti-malarial drugs, as these polymorphisms alter parasite susceptibility to artemisinin combination treatment (ACT) [1].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.