Abstract

Counterintuitive to the common notion of symmetry breaking, asymmetry favors synchrony in a network of oscillators. Our observations on an ensemble of identical Stuart-Landau systems under a symmetry breaking coupling support our conjecture. As usual, for a complete deterministic and the symmetric choice of initial clusters, a variety of asymptotic states, namely, multicluster oscillation death (1-OD, 3-OD, and -OD), chimera states, and traveling waves emerge. Alternatively, multiple chimera death (1-CD, 3-CD, and -CD) and completely synchronous states emerge in the network whenever some randomness is added to the symmetric initial states. However, in both the cases, an increasing asymmetry in the initial cluster size restores symmetry in the network, leading to the most favorable complete synchronization state for a broad range of coupling parameters. We are able to reduce the network model using the mean-field approximation that reproduces the dynamical features of the original network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.