Abstract

In the present work two different cold working and annealing schemes were utilized, and the asymmetric superelastic response of thermomechanically processed materials were then assessed through cyclic tensile and compressive modes of deformation. The values of transformation stress, transformation strain, and pseudoelastic strain were measured for each treated and solutionized specimens and the asymmetric response was compared. In the solution annealed state, the difference of these parameters at different deformation modes was negligible due to the weak texture of the material, while for thermomechanically treated ones, development of specific deformation and recrystallization texture components was identified to be one of the underlying reasons of intensified asymmetry. The evolved substructure during the thermomechanical processing also played a substantial role in determining the asymmetric response. The presence of fine grains and dense dislocation substructure could hinder the movement of the transformation front, thus limiting the range of transformation. In tensile mode, the transformation stress was lower, but higher transformation strain was achieved, which was discussed relying on the slip activity in specified oriented grains. The lower transformation strain in compression mode led to lower pseudoelastic strain due to the narrow transformation range which finally degraded superelastic response of the material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.