Abstract
In this paper, a novel multiport CLL resonant converter with a phase shift and asymmetrical duty-cycle control is analyzed. The power flow can be maintained with the phase shift between ports, whereas the asymmetric duty cycle manages the output voltage at the load terminals. Series connected transformers at the secondary side enable to split the power in each port and reduce the voltage stresses on the switches compared with the parallel connected transformers. Even under the unbalanced input conditions, the power flow between ports can be managed by the central control without any need for communication devices. In order to investigate the power distribution in each port, two different isolated dc sources and a variable load are used. The converter operation is tested at 40, 80, or 120 V inputs, with the output of 200 V at a full power of 1 kW with a maximum efficiency of 97.4%. The experimental results show that the multiport CLL resonant converter with the proposed controller is an appropriate topology for sustainable energy platforms, which are supplied by different types of energy sources, such as photovoltaic, fuel cell, wind, and so on, at various power capacities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.