Abstract

A general chemo-enzymatic approach to synthesize both enantioenriched trans-3-alkoxyamino-4-oxy-2-piperidones, which are important scaffold for various naturally occurring alkaloids, is reported. To this end, a selective transition-metal-free dual C−H oxidation of piperidines mediated by the TEMPO oxoammonium cation (TEMPO+) was used, followed by enzymatic resolution of the corresponding alkoxyamino-2-piperidones with Candida antarctica lipase (CAL-B), to yield the title compounds in high enantiomeric excess (ee). The absolute configuration of both enantioenriched compounds was determined using chemical correlation and circular dichroism (CD) spectroscopy. The former method highlights the oxidative ring contraction of the trans-alkoxyamine-2-piperidone ring into its corresponding 2-pyrrolidinone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.