Abstract

This paper presents an asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS) that directly extends the SuPFuNIS model by permitting signal and weight fuzzy sets to be modeled by asymmetric Gaussian membership functions. The asymmetric subsethood-product network admits both numeric as well as linguistic inputs. Input nodes, which act as tunable feature fuzzifiers, fuzzify numeric inputs with asymmetric Gaussian fuzzy sets; and linguistic inputs are presented as is. The antecedent and consequent labels of standard fuzzy if-then rules are represented as asymmetric Gaussian fuzzy connection weights of the network. The model uses mutual subsethood based activation spread and a product aggregation operator that works in conjunction with volume defuzzification in a gradient descent learning framework. Despite the increase in the number of free parameters, the proposed model performs better than SuPFuNIS, on various benchmarking problems, both in terms of the performance accuracy and architectural economy and compares excellently with other various existing models with a performance better than most of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.