Abstract

The development of unconventional ligand scaffolds is an important aspect to alter reaction pathways of transition-metal-catalyzed reactions. The nature of the counterion of cationic metal complexes plays an important role in the catalyst reactivity. We herein report a chiral anionic bidentate bis-phosphine ligand based on the popular phospholane scaffold. Subsequently, zwitterionic rhodium(I) complexes with no external counterion were synthesized, and their potential was evaluated in asymmetric carbon carbon bond activation of cyclobutanones. This type of rhodium complex allows, for a significantly lower reaction temperature than analogous cationic rhodium complexes and enables, for the first time, asymmetric transformations with up to 93.5:6.5 enantiomeric ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.