Abstract

AbstractAs for many intrinsically disordered proteins, order–disorder transitions in the N‐terminal oligomerization domain of the multifunctional nucleolar protein nucleophosmin (Npm‐N) are central to its function, with phosphorylation and partner binding acting as regulatory switches. However, the mechanism of this transition and its regulation remain poorly understood. In this study, single‐molecule and ensemble experiments revealed pathways with alternative sequences of folding and assembly steps for Npm‐N. Pathways could be switched by altering the ionic strength. Phosphorylation resulted in pathway‐specific effects, and decoupled folding and assembly steps to facilitate disorder. Conversely, binding to a physiological partner locked Npm‐N in ordered pentamers and counteracted the effects of phosphorylation. The mechanistic plasticity found in the Npm‐N order–disorder transition enabled a complex interplay of phosphorylation and partner‐binding steps to modulate its folding landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.