Abstract

We report heat transport measurements and optical shadowgraph visualization of rotating Rayleigh-B\'enard convection. For dimensionless rotation rates 1404300, the initial transition to convection, occurring at a Rayleigh number R much less than the linear-stability value for roll or vortex states, is a forward Hopf bifurcation to an azimuthally asymmetric state with mode number n. States with n=3, 4, 5, 6, and 7 exist at low to moderate R and precess with frequencies that depend on R and \ensuremath{\Omega}. At higher R there is a continuous transition to a state with noisy, time-dependent heat transport, a distinct array of vortices in the central region, and a modulation of the precession speed of the outer structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.