Abstract

SummaryRegeneration of vertebrate skeletal muscles requires satellite cells, a population of stem cells that are quiescent in normal conditions and divide, differentiate, and self-renew upon activation triggered by exercise, injury, and degenerative diseases. Satellite cell self-renewal is essential for long-term tissue homeostasis, and previous work has identified a number of external cues that control this process. However, little is known of the possible intrinsic control mechanisms of satellite cell self-renewal. Here, we show that quiescent satellite cells harbor a primary cilium, which is rapidly disassembled upon entry into the cell cycle. Contrasting with a commonly accepted belief, cilia reassembly does not occur uniformly in cells exiting the cell cycle. We found that primary cilia reassemble preferentially in cells committed to self-renew, and disruption of cilia reassembly causes a specific deficit in self-renewing satellite cells. These observations indicate that primary cilia provide an intrinsic cue essential for satellite cell self-renewal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.