Abstract

Two-dimensional (2D) Dion-Jacobson (DJ) perovskites are drawing significant attention in optoelectronic fields because of their enhanced out-of-plane electron coupling and improved structure stability. However, the structural effects of organic cations on the in-plane charge transport properties of 2D DJ lead bromide perovskites have remained less explored. Herein, we adopt asymmetric 3-(dimethylamino)-1-propylammonium (DMPD) and symmetric butane-1,4-diammonium (BDA) to systematically investigate the influence of organic cations on the structural, optical, and in-plane charge transport properties of 2D lead bromide perovskites. The large penetration depth of DMPD2+ induces a decreased perovskite layer distortion and a lower bandgap in DMPDPbBr4, compared with that of BDAPbBr4. Moreover, DMPDPbBr4 is shown to possess a low exciton binding energy, a low defect density, and a low ion migration activation energy, thereby yielding a more efficient in-plane charge collection efficiency than BDAPbBr4. Density functional theory calculations suggest that the improved in-plane charge transport can be traced to the enlarged antibonding coupling between Pb-6s and Br-4p orbitals that enables a high band dispersion and a low carrier effective mass in the in-plane direction of DMPDPbBr4. Finally, the planar Ag/DMPDPbBr4/Ag photodetector delivers a satisfying detectivity of 1.73 × 1012 Jones under an incident power intensity of 0.16 mW cm-2 and a high on/off ratio of 5.3 × 103. The above findings offer novel insight for the design of 2D DJ lead bromide perovskites for optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.