Abstract

Cellulose nanocrystals (CNC) were functionalized in aqueous media at the reducing, aldehyde ends of cellulose. CNC oxidation to produce carboxyl groups was followed by carbodiimide-mediated reaction to install thiol groups. The selectivity and extent of thiolation at the reducing ends was qualitatively confirmed by imaging (transmission electron microscopy) silver nanoparticles that tagged the CNC termini and by X-ray photoelectron spectroscopy, respectively. The adsorption of thiolated CNC onto gold surfaces as well as the viscoelastic property of the formed adlayer was investigated by using quartz crystal microgravimetry. The thiolated CNC chemisorbed on the surfaces were further analyzed for surface density and distribution by using atomic force microscopy. Overall we introduce a facile, mild asymmetric thiolation procedure as an efficient alternative to conventional reductive amination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.