Abstract
The reaction center (RC)-bound primary acceptor quinone Q A of the photosynthetic bacterium Rhodobacter sphaeroides R26 functions as a one-electron gate. The radical anion Q •− A is proposed to have an asymmetric electron distribution, induced by the protein environment. We replace the native ubiquinone-10 (UQ10) with specifically 13C-labelled UQ10, and use Q-band (35 GHz) EPR spectroscopy to investigate this phenomenon in closer detail. The direct observation of the 13C-hyperfine splitting of the g z-component of UQ10 •− A in the RC and in frozen isopropanol shows that the electron spin distribution is symmetric in the isopropanol glass, and asymmetric in the RC. Our results allow qualitative assessment of the spin and charge distribution for Q •− A in the RC. The carbonyl oxygen of the semiquinone anion nearest to the S = 2 Fe 2+-ion and Q B is shown to acquire the highest (negative) charge density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.