Abstract
This paper proposes the SU-normal distribution to describe non-normality features embedded in financial time series, such as: asymmetry and fat tails. Applying the SU-normal distribution to the estimation of univariate and multivariate GARCH models, we test its validity in capturing asymmetry and excess kurtosis of heteroscedastic asset returns. We find that the SU-normal distribution outperforms the normal and Student-t distributions for describing both the entire shape of the conditional distribution and the extreme tail shape of daily exchange rates and stock returns. The goodness-of-fit (GoF) results indicate that the skewness and excess kurtosis are better captured by the SU-normal distribution. The exceeding ratio (ER) test results indicate that the SU-normal is superior to the normal and Student-t distributions, which consistently underestimate both the lower and upper extreme tails, and tend to overestimate the lower tail in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.