Abstract
Magnetostratigraphic studies have established a first-order chronological framework for the Paleolithic sites in the Nihewan Basin (North China), which enabled tracking early human evolution in East Asia. However, to fully understand how well early humans were adapted to climate change, a truly precise dating of the Paleolithic sites is required. Here, we established a high-resolution astronomical timescale for the Xiantai and Donggutuo fluvio-lacustrine successions at the eastern margin of the Nihewan Basin employing low-field magnetic susceptibility ( χ) as a climatic indicator, aiming to further refine the ages of the Xiantai, Donggutuo and Maliang Paleolithic sites. Starting from an initial age model constrained by geomagnetic reversals, larger-scale χ cycles were firstly tuned to orbital obliquity using an automatic orbital tuning method. This first-order tuning was followed by simultaneously tuning χ to both obliquity and precession. The finally tuned χ records can be correlated almost cycle-by-cycle with the quartz grain-size record of the Chinese loess sequence and the marine δ 18O record. The astronomically estimated age of the Xiantai Paleolithic site is ca. 1.48 Ma, corresponding to paleosol layer S 20 of the Chinese loess sequences or marine oxygen isotope stage (MIS) 49, an interglacial period. The astronomical estimate for the Donggutuo Paleolithic site ranges from ~ 1.06 Ma to 1.12 Ma, corresponding to paleosol/loess layers S 11–S 12 or MIS 31–33, spanning both interglacial and glacial periods. The astronomically estimated age of the Maliang Paleolithic site is ~ 0.79 Ma, corresponding to loess layer L 8 or MIS 20, a glacial period. This astronomical finding further implies that early humans may have permanently occupied China as far north as 40 oN since at least 1.1 Ma, and before this time the occupation may be intermittent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.