Abstract

Increasing evidence supports a crucial role for glial metabolism in maintaining proper synaptic function and in the etiology of neurological disease. However, the study of glial metabolism in humans has been hampered by the lack of noninvasive methods. To specifically measure the contribution of astroglia to brain energy metabolism in humans, we used a novel noninvasive nuclear magnetic resonance spectroscopic approach. We measured carbon 13 incorporation into brain glutamate and glutamine in eight volunteers during an intravenous infusion of [2-13C] acetate, which has been shown in animal models to be metabolized specifically in astroglia. Mathematical modeling of the three established pathways for neurotransmitter glutamate repletion indicates that the glutamate/glutamine neurotransmitter cycle between astroglia and neurons (0.32 +/- 0.07 micromol x gm(-1) x min(-1)) is the major pathway for neuronal glutamate repletion and that the astroglial TCA cycle flux (0.14 +/- 0.06 micromol x gm(-1) x min(-1)) accounts for approximately 14% of brain oxygen consumption. Up to 30% of the glutamine transferred to the neurons by the cycle may derive from replacement of oxidized glutamate by anaplerosis. The further application of this approach could potentially enlighten the role of astroglia in supporting brain glutamatergic activity and in neurological and psychiatric disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.