Abstract

Astrocytes perform various supporting functions, including ion buffering, metabolic supplying and neurotransmitter clearance. They can also sense neuronal activity owing to the presence of specific receptors for neurotransmitters. In turn, astrocytes can regulate synaptic activity through the release of gliotransmitters. Evidence has shown that astrocytes are very sensitive to the locus coeruleus (LC) afferents. However, little is known about how LC neuromodulatory norepinephrine (NE) modulates synaptic transmission through astrocytic activity. In mouse dentate gyrus (DG), we demonstrated an increase in the frequency of miniature excitatory postsynaptic currents (mEPSC) in response to NE, which required the release of glutamate from astrocytes. The rise in glutamate release probability is likely due to the activation of presynaptic GluN2B-containing NMDA receptors. Moreover, we showed that the activation of NE signaling in DG is necessary for the formation of contextual learning memory. Thus, NE signaling activation during fear conditioning training contributed to enduring changes in the frequency of mEPSC in DG. Our results strongly support the physiological neuromodulatory role of NE signaling, which is derived from activation of astrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.