Abstract

ABSTRACT About 10 per cent of intermediate- and high-mass dwarf stars are observed to host a strong large-scale magnetic field at their surface, which is thought to be of fossil field origin. However, there are few inferences as to the magnetic field strength and geometry within the deep interiors of stars. Considering that massive stars harbour a convective core whilst on the main sequence, asteroseismology of gravity (g) modes is able to provide constraints on their core masses, yet it has so far not been used to probe the strength of their interior magnetic fields. Here, we use asteroseismology to constrain an upper limit for the magnetic field strength in the near-core region of the pulsating and magnetic B star HD 43317, based on the expected interaction of a magnetic field and its g modes. We find a magnetic field strength of order 5 × 105 G is sufficient to suppress high-radial order g modes and reproduce the observed frequency spectrum of HD 43317, which contains only high-frequency g modes. This result is the first inference of the magnetic field strength inside a main-sequence star.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.