Abstract

Fibrous active network structures whose properties are regulated by motor proteins, or simply motors, are fundamental to life. Here, a full elastic and three dimensional model for such networks and motors is presented. The effects of surface anchoring are accounted for and we demonstrate that for unidirectional motors two basic contractile phases emerge in these systems. The transition is governed by a single parameter (τb/τc) which is the ratio of the breaking strain (τb) and the motility limiting strain (τc) of the motors. For τb/τc ≲ 2 and clamped boundaries, the network ruptures and formation of local asters occurs with a high density of motors at the centre and the fibers radially spanning out. This phase displays contraction strain during the formation of asters but the network stress is relaxed once the asters have emerged, demonstrating that the formation of aster-like structures provides a mechanism for stress relaxation. For 2.7 ≲ τb/τc the network remains intact, but reaches a force equilibrium with a high contraction strain in the case of clamped boundaries. Between these two limits the network is partly ruptured. Experimental measurements (e.g. J. T. Nishizaka, H. Miyata, H. Yoshikawa, S. Ishiwata and K. Kinosita Jr., Nature, 1995, 377, 251 and J. F. Finer, R. M. Simmons, J. A. Spudich, Nature, 1994, 368, 113) indicate that actin filament and myosin motors interact with τb/τc ≈ 2.7 which is right at the limit of motor induced fracture for a random network, indicating that e.g. a cytoskeleton with active myosin is susceptible to rupture. This is perhaps not a coincidence and may well be an important factor contributing to cellular dynamics. In the case of free boundaries the network collapses onto one single aster. We also show that the distribution of energy on the motors is a power-law, below the motility limit energy, with the exponent −0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.