Abstract

Allergic Contact Dermatitis (ACD; chemical-induced skin sensitisation) represents a key consumer safety endpoint for the cosmetics industry. At present, animal tests (predominantly the mouse Local Lymph Node Assay) are used to generate skin sensitisation hazard data for use in consumer safety risk assessments. An animal testing ban on chemicals to be used in cosmetics will come into effect in the European Union (EU) from March 2009. This animal testing ban is also linked to an EU marketing ban on products containing any ingredients that have been subsequently tested in animals, from March 2009 or March 2013, depending on the toxicological endpoint of concern. Consequently, the testing of cosmetic ingredients in animals for their potential to induce skin sensitisation will be subject to an EU marketing ban, from March 2013 onwards. Our conceptual framework and strategy to deliver a non-animal approach to consumer safety risk assessment can be summarised as an evaluation of new technologies (e.g. 'omics', informatics), leading to the development of new non-animal (in silico and in vitro) predictive models for the generation and interpretation of new forms of hazard characterisation data, followed by the development of new risk assessment approaches to integrate these new forms of data and information in the context of human exposure. Following the principles of the conceptual framework, we have been investigating existing and developing new technologies, models and approaches, in order to explore the feasibility of delivering consumer safety risk assessment decisions in the absence of new animal data. We present here our progress in implementing this conceptual framework, with the skin sensitisation endpoint used as a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.