Abstract
BackgroundBiomarker concentrations of metals are associated with neurodevelopment, and these associations may be modified by nutritional status (e.g., iron deficiency). No prior study on associations of metal mixtures with neurodevelopment has assessed effect modification by iron status. ObjectivesWe aimed to quantify associations of an industry-relevant metal mixture with verbal learning and memory among adolescents, and to investigate the modifying role of iron status on those associations. MethodsWe used cross-sectional data from 383 Italian adolescents (10–14 years) living in proximity to ferroalloy industry. Verbal learning and memory was assessed using the California Verbal Learning Test for Children (CVLT-C), and metals were quantified in hair (manganese, copper, chromium) or blood (lead) using inductively coupled plasma mass spectrometry. Serum ferritin, a proxy for iron status, was measured using immunoassays. Covariate-adjusted associations of the metal mixture with CVLT subtests were estimated using Bayesian Kernel Machine Regression, and modification of the mixture associations by ferritin was examined. ResultsCompared to the 50th percentile of the metal mixture, the 90th percentile was associated with a 0.12 standard deviation [SD] (95% CI = −0.27, 0.50), 0.16 SD (95% CI = −0.11, 0.44), and 0.11 SD (95% CI = −0.20, 0.43) increase in the number of words recalled for trial 5, long delay free, and long delay cued recall, respectively. For an increase from its 25th to 75th percentiles, copper was beneficially associated the recall trials when other metals were fixed at their 50th percentiles (for example, trial 5 recall: β = 0.31, 95% CI = 0.14, 0.48). The association between copper and trial 5 recall was stronger at the 75th percentile of ferritin, compared to the 25th or 50th percentiles. ConclusionsIn this metal mixture, copper was beneficially associated with neurodevelopment, which was more apparent at higher ferritin concentrations. These findings suggest that metal associations with neurodevelopment may depend on iron status, which has important public health implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.