Abstract

SH-2-containing inositol 5'-phosphatase 2 (SHIP-2) is a physiologically important lipid phosphatase that functions to hydrolyze phosphatidylinositol (PI) 3-kinase product PI(3,4,5)P3 to PI(3,4)P2 in the negative regulation of insulin signaling. We investigated whether SHIP-2 is associated with the insulin resistance of diabetic db/db mice. The amount of SHIP-2 protein was elevated in quadriceps muscle and epididymal fat tissue, but not in the liver, of db/db mice relative to that in control db/+m mice. In accordance with the enhanced expression of SHIP-2, its localization at the membrane preparation was increased in the skeletal muscle and fat tissue of db/db mice. Insulin stimulation of PI 3-kinase activity was modestly decreased in skeletal muscle, fat tissue, and liver of db/db mice compared with that of db/+m mice. In addition to the modest decrease at the level of PI 3-kinase, the activity of Akt and protein kinase C (PKC)-zeta/lambda, which are downstream molecules of PI 3-kinase, was more severely reduced in the skeletal muscle and fat tissue, but not in liver of db/db mice. Treatment with the insulin-sensitizing agent rosiglitazone decreased the elevated expression of SHIP-2 in the skeletal muscle and fat tissue of db/db mice. Insulin-induced Akt activation and PKC-zeta/lambda phosphorylation were restored to the control level, although insulin-stimulated PI 3-kinase activation was minimally affected in the skeletal muscle and fat tissue of db/db mice. These results indicate that SHIP-2 is a novel molecule associated with insulin resistance in the skeletal muscle and fat tissue, and that insulin-induced activity of the downstream molecules of PI 3-kinase is decreased, at least in part, by the elevated expression of SHIP-2 in diabetic db/db mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.