Abstract

Saccharomyces yeasts are highly dispersed in the environment and microbiota of higher organisms. The yeast killing phenotype, encoded by the viral system, was discovered to be a significant property for host survival. Minor alterations in transcription patterns underpin the reciprocal relationship between LA and M viruses and their hosts, suggesting the fine-tuning of the transcriptional landscape. To uncover the principal targets of both viruses, we performed proteomics analysis of virus-enriched subsets of host proteins in virus type-specific manner. The essential pathways of protein metabolism-from biosynthesis and folding to degradation-were found substantially enriched in virus-linked subsets. The fractionation of viruses allowed separation of virus-linked host RNAs, investigated by high-content RNA sequencing. Ribosomal RNA was found to be inherently associated with LA-lus virus, along with other RNAs essential for ribosome biogenesis. This study provides a unique portrayal of yeast virions through the characterization of the associated proteome and cognate RNAs, and offers a background for understanding ScV-LA viral infection persistency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.