Abstract

Breast milk contains several bioactive factors including human milk oligosaccharides (HMOs) and microbes that shape the infant gut microbiota. HMO profile is determined by secretor status; however, their influence on milk microbiota is still uncovered. This study is aimed to determine the impact of the FUT2 genotype on the milk microbiota during the first month of lactation and the association with HMO. Milk microbiota from 25 healthy lactating women was determined by quantitative polymerase chain reaction and 16S gene pyrosequencing. Secretor genotype was obtained by polymerase chain reaction-random fragment length polymorphisms and by HMO identification and quantification. The most abundant bacteria were Staphylococcus and Streptococcus, followed by Enterobacteriaceae-related bacteria. The predominant HMO in secretor milk samples were 2'FL and lacto-N-fucopentaose I, whereas non-secretor milk was characterized by lacto-N-fucopentaose II and lacto-N-difucohexaose II. Differences in microbiota composition and quantity were found depending on secretor/non-secretor status. Lactobacillus spp, Enterococcus spp, and Streptococcus spp were lower in non-secretor than in secretor samples. Bifidobacterium genus and species were less prevalent in non-secretor samples. Despite no differences on diversity and richness, non-secretor samples had lower Actinobacteria and higher relative abundance of Enterobacteriaceae, Lactobacillaceae, and Staphylococcaceae. Maternal secretor status is associated with the human milk microbiota composition and is maintained during the first 4 weeks. Specific associations between milk microbiota, HMO, and secretor status were observed, although the potential biological impact on the neonate remains elusive. Future studies are needed to reveal the early nutrition influence on the reduction of risk of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.