Abstract

DNA topoisomerase (topo) II is an essential nuclear enzyme that plays an important role in DNA metabolism and chromosome organization. In the present study, we expressed human topo IIα in mammalian cells by fusion to an enhanced green fluorescent protein (EGFP). Decatenation assays indicated that the EGFP–topo IIα is catalytically active in vitro. Assays for band depletion, growth inhibition, and cytotoxicity by topo II inhibitors suggested that the fusion protein is also functional in vivo. By following its subcellular localization throughout the cell cycle in living cells, we found that the fusion protein is localized to the nucleus and nucleolus at interphase, and it is bound to chromosomal DNA at every stage of mitosis. Of importance, a mutant EGFP–topo IIα, in which the active Tyr 805 is replaced by Phe (Y805F) and is catalytically inactive, still binds to chromosomal DNA throughout the cell cycle like the wild-type enzyme. Together, our results suggest that the ability of topo IIα to bind to chromosomal DNA in the cell, a presumed requirement for its structural role, can be separated from its catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.