Abstract

Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, remains one of the major and most common complications of very preterm birth. Insight into factors associated with the pathogenesis of BPD is key to improving its prevention and treatment. To perform a systematic review, meta-analysis, and metaregression of clinical studies exploring the association between chorioamnionitis (CA) and BPD in preterm infants. PubMed and Embase were searched without language restriction (last search, October 1, 2018). Key search terms included bronchopulmonary dysplasia, chorioamnionitis, and risk factors. Included studies were peer-reviewed studies examining preterm (<37 weeks' gestation) or very low-birth-weight (<1500 g) infants and reporting primary data that could be used to measure the association between exposure to CA and the development of BPD. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guideline was followed. Data were independently extracted by 2 researchers. A random-effects model was used to calculate odds ratios (ORs) and 95% CIs. Heterogeneity in effect size across studies was studied using multivariate, random-effects metaregression analysis. The primary outcome was BPD, defined as supplemental oxygen requirement on postnatal day 28 (BPD28) or at the postmenstrual age of 36 weeks (BPD36). Covariates considered as potential confounders included differences between CA-exposed and CA-unexposed infants in gestational age, rates of respiratory distress syndrome (RDS), exposure to antenatal corticosteroids, and rates of early- and late-onset sepsis. A total of 3170 potentially relevant studies were found, of which 158 met the inclusion criteria (244 096 preterm infants, 20 971 CA cases, and 24 335 BPD cases). Meta-analysis showed that CA exposure was significantly associated with BPD28 (65 studies; OR, 2.32; 95% CI, 1.88-2.86; P < .001; heterogeneity: I2 = 84%; P < .001) and BPD36 (108 studies; OR, 1.29; 95% CI, 1.17-1.42; P < .001; heterogeneity: I2 = 63%; P < .001). The association between CA and BPD remained significant for both clinical and histologic CA. In addition, significant differences were found between CA-exposed and CA-unexposed infants in gestational age, birth weight, odds of being small for gestational age, exposure to antenatal corticosteroids, and early- and late-onset sepsis. Chorioamnionitis was not significantly associated with RDS (48 studies; OR, 1.10; 95% CI, 0.92-1.34; P = .24; heterogeneity: I2 = 90%; P < .001), but multivariate metaregression analysis with backward elimination revealed that a model combining the difference in gestational age and the odds of RDS was associated with 64% of the variance in the association between CA and BPD36 across studies. The results of this study confirm that among preterm infants, exposure to CA is associated with a higher risk of developing BPD, but this association may be modulated by gestational age and risk of RDS.

Highlights

  • Meta-analysis showed that CA exposure was significantly associated with BPD28 (65 studies; odds ratios (ORs), 2.32; 95% CI, 1.88-2.86; P < .001; heterogeneity: I2 = 84%; P < .001) and BPD36 (108 studies; OR, 1.29; 95% CI, 1.17-1.42; P < .001; heterogeneity: I2 = 63%; P < .001)

  • The results of this study confirm that among preterm infants, exposure to CA is associated with a higher risk of developing Bronchopulmonary dysplasia (BPD), but this association may be modulated by gestational age and risk of respiratory distress syndrome (RDS)

  • The results of this study confirm that, among preterm infants, exposure to CA is associated with a higher risk of developing BPD, but this association may be modulated by gestational age and risk of RDS

Read more

Summary

Introduction

Besides the aforementioned detrimental effects, clinical observations support the concept that fetal exposure to infection or inflammation may be beneficial to the very preterm lung.[4,14,15] Watterberg et al[15] were the first to report that CA was associated with an increased risk for BPD but a reduced risk for respiratory distress syndrome (RDS). This observation led to the hypothesis that CA exposure accelerated functional lung maturation but increased the vulnerability of the preterm lung to postnatal injury.[4,14,16] the data supporting this hypothesis are inconsistent, and subsequent studies during the past 20 years have found that CA was associated with increased, decreased, or no risk of either BPD or RDS.[4,14,16]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.