Abstract

The protein assumed to be associated with bacteriochlorophyll (BChl) a in chlorosomes from the photosynthetic green filamentous bacterium Chloroflexus aurantiacus was investigated by alkaline treatment, proteolytic digestion and a new treatment using 1-hexanol, sodium cholate and Triton X-100. Upon alkaline treatment, only the 5.7 kDa CsmA protein was removed from the chlorosomes among six proteins detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, concomitantly with the disappearance of BChl a absorption at 795 nm. Trypsin treatment removed two proteins with molecular masses of 11 and 18 kDa (CsmN and CmsM), whereas the spectral properties of BChl a and BChl c were not changed. By the new hexanol-detergent (HD) treatment, most BChl c and all of the detected proteins except CsmA were removed from the chlorosomes without changing the BChl a spectral properties. Subsequent proteinase K treatment of these HD-treated chlorosomes caused digestion of CsmA and a simultaneous decrease of the BChl a absorption band. Based on these results, we suggest that CsmA is associated with BChl a in the chlorosomes. This suggestion was supported by the measured stoichiometric ratio of BChl a to CsmA in isolated chlorosomes, which was estimated to be between 1.2 and 2.7 by amino acid analysis of the SDS-PAGE-resolved protein bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.