Abstract

BackgroundThe intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease.ResultsTo screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F2 Charolais × German Holstein resource population and identified a quantitative trait locus (QTL) for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1) gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR) and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G) to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid) in skeletal muscle. A tentative association of the ACSL1 gene variant with intramuscular fat content indicated that an indirect effect on fatty acid composition via modulation of total fat content of skeletal muscle cannot be excluded.ConclusionsThe initial QTL analysis suggested the ACSL1 gene as a positional and functional candidate gene for fatty acid composition in bovine skeletal muscle. The findings of subsequent association analyses indicate that ACSL1 or a separate gene in close proximity might play a functional role in mediating the lipid composition of beef.

Highlights

  • The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality

  • The quantitative trait locus (QTL) interval corresponded to a region, where previously QTL affecting marbling had been detected in a Bos indicus × Bos taurus cross and two commercial US Angus populations [45,46]

  • The results revealed that the c.481-233A allele of this gene variant is strongly associated with a higher relative level of n-3 fatty acid (FA), polyunsaturated fatty acids (PUFA), docosapentaenoic fatty acid (DPA), and n-3 LC-PUFA

Read more

Summary

Introduction

The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. N-3 LC-PUFA were recommended to people with diabetes and metabolic disorders associated to obesity [5,14] Their beneficial health effects may be mediated through multiple distinct mechanisms, including alterations in cell membrane composition and function, gene expression, or eicosanoid biosynthesis [15,16]. Increases of n-3 LC-PUFA content in the human diet can be achieved by dietary supplementation, but there is a potential to alter the natural fatty acid (FA) profile in food from animals. A recent study showed that cattle and lambs fed grass-diet in the period before slaughter had an increased content of beneficial FAs in meat, and that subsequent moderate consumption of the respective meat had resulted in increased plasma and platelet n-3 LC-PUFA concentrations in healthy human individuals [22]. The link between nutritional intake of FAs and its subsequent concentration in skeletal muscle is stronger in monogastric animals (pigs, poultry) than in ruminants due to hydrogenation of dietary FAs in the rumen (e.g., [26])

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.