Abstract
A small vertebral cross-sectional area (CSA) imparts a mechanical disadvantage that escalates the risk for vertebral fractures in elderly populations. We examined whether a small vertebral CSA is also associated with a greater degree of vertebral wedging in children. Measurements of vertebral CSA, lumbar lordosis (LL) or thoracic scoliosis angle, and vertebral wedging were obtained in 100 healthy adolescents (50 boys and 50 girls) and 25 girls with adolescent idiopathic scoliosis (AIS) using magnetic resonance imaging. Vertebral CSA of the lumbar vertebrae negatively correlated to the degree of posteroanterior vertebral wedging at L5 (r = -0.49; p < 0.0001); this was true whether all subjects were analyzed together or boys and girls independently. In contrast, we found a positive correlation between the degree of LL and vertebral wedging (r = 0.57; p < 0.0001). Multiple regression analysis showed that the association between vertebral CSA and wedging was independent of age and body mass index. In girls with AIS, vertebral CSA negatively correlated to the degree of lateral thoracic vertebral wedging (r = -0.66; p = 0.0004), an association that persisted even after accounting for age and body mass index. Additionally, Cobb angle positively correlated to lateral thoracic vertebral wedging (r = 0.46; p = 0.021). Our cross-sectional results support the hypothesis that smaller vertebral CSA is associated with greater vertebral deformity during growth, as in adulthood. © 2017 American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.