Abstract
Cardiovascular disease (CVD) may not be detected in time with conventional clinical approaches. Abnormal gait patterns have been associated with pathological conditions and can be monitored continuously by gait video. We aim to test the association between non-contact, video-based gait information and general CVD status. Individuals undergoing confirmatory CVD evaluation were included in a prospective, cross-sectional study. Gait videos were recorded with a Kinect camera. Gait features were extracted from gait videos to correlate with the composite and individual components of CVD, including coronary artery disease, peripheral artery disease, heart failure, and cerebrovascular events. The incremental value of incorporating gait information with traditional CVD clinical variables was also evaluated. Three hundred fifty-two participants were included in the final analysis [mean (standard deviation) age, 59.4 (9.8) years; 25.3% were female]. Compared with the baseline clinical variable model [area under the receiver operating curve (AUC) 0.717, (0.690-0.743)], the gait feature model demonstrated statistically better performance [AUC 0.753, (0.726-0.780)] in predicting the composite CVD, with further incremental value when incorporated with the clinical variables [AUC 0.764, (0.741-0.786)]. Notably, gait features exhibited varied association with different CVD component conditions, especially for peripheral artery disease [AUC 0.752, (0.728-0.775)] and heart failure [0.733, (0.707-0.758)]. Additional analyses also revealed association of gait information with CVD risk factors and the established CVD risk score. We demonstrated the association and predictive value of non-contact, video-based gait information for general CVD status. Further studies for gait video-based daily living CVD monitoring are promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.