Abstract

Recently, a relative transfer function (RTF) vector-based method has been proposed to estimate the direction of arrival (DOA) of a target speaker for a binaural hearing aid setup, assuming the availability of external microphones. This method exploits the external microphones to estimate the RTF vector corresponding to the binaural hearing aid and constructs a one-dimensional spatial spectrum by comparing the estimated RTF vector against a database of anechoic prototype RTF vectors for several directions. In this paper, we assume the availability of a calibrated array of external microphones, which is characterized by a second database of anechoic prototype RTF vectors. We propose a method where the external microphones are not only exploited for RTF vector estimation but also assist in estimating the DOA of the target speaker. Based on the estimated RTF vector for all microphones and the prototype RTF databases of the binaural hearing aid and the external microphone array, a two-dimensional spatial spectrum is constructed from which the DOA is estimated. Experimental results for a reverberant environment with diffuse-like noise show that assisted DOA estimation outperforms DOA estimation where the prototype database characterizing the external microphone array is not used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.