Abstract
Grass shrimp Palaemonetes pugio were fed mercury (Hg)-contaminated oligochaetes for 15 days and analyzed for Hg, cadmium (Cd), and carbon assimilation efficiencies (AE) as well as toxicological end points related to digestion. Disproportionate increases in stable Hg concentrations in shrimp did not appear to be related to partitioning to trophically available Hg in worms. Hg AE by pre-exposed shrimp reached a plateau (approximately 53 %), whereas Cd AE varied (approximately 40-60 %) in a manner that was not dose-dependent. Carbon AE did not differ among treatments (approximately 69 %). Gut residence time was not impacted significantly by Hg pre-exposure (grand median approximately 465 min), however, there was a trend between curves showing percentages of individuals with markers in feces over time versus treatment. Feces-elimination rate did not vary with dietary pre-exposure. Extracellular protease activity varied approximately 1.9-fold but did not exhibit dose-dependency. pH increased over the range of Hg pre-exposures within the anterior (pH approximately 5.33-6.51) and posterior (pH approximately 5.29-6.25) regions of the cardiac proventriculus and Hg assimilation exhibited a negative relationship to hydrogen ion concentrations. The results of this study indicate that previous Hg ingestion can elicit post-assimilatory impacts on grass shrimp digestive physiology, which may, in turn, influence Hg assimilation during subsequent digestive cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of Environmental Contamination and Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.