Abstract

Caenorhabditis elegans compensates for the difference in X chromosome gene dose between males (XO) and hermaphrodites (XX) through a mechanism that equalizes the levels of X-specific mRNA transcripts between the two sexes. We have devised a sensitive and quantitative genetic assay to measure perturbations in X chromosome gene expression caused by mutations that affect this process of dosage compensation. The assay is based on quantitating the precocious alae phenotype caused by a mutation that reduces but does not eliminate the function of the X-linked gene lin-14. We demonstrate that in diploid animals the lin-14 gene is dosage compensated, implying that the normal dosage compensation mechanism in C. elegans lacks the capacity to compensate completely for the additional X chromosome in triplo-X animals. Using the lin-14 assay we compare the effects of mutations in the genes dpy-21, dpy-26, dpy-27, dpy-28, and dpy-22 on X-linked gene expression. Additionally, in the case of dpy-21 we correlate the change in phenotypic expression of lin-14 with a corresponding change in the lin-14 mRNA transcript level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.