Abstract

The European Space Agency (ESA)’s Sentinel-2A (S2A) mission is providing time series that allow the characterisation of dynamic vegetation, especially when combined with the National Aeronautics and Space Administration (NASA)/United States Geological Survey (USGS) Landsat 7 (L7) and Landsat 8 (L8) missions. Hybrid retrieval workflows combining non-parametric Machine Learning Regression Algorithms (MLRAs) and vegetation Radiative Transfer Models (RTMs) were proposed as fast and accurate methods to infer biophysical parameters such as Leaf Area Index (LAI) from these data streams. However, the exact design of optimal retrieval workflows is rarely discussed. In this study, the impact of five retrieval workflow features on LAI prediction performance of MultiSpectral Instrument (MSI), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) observations was analysed over a Dutch beech forest site for a one-year period. The retrieval workflow features were the (1) addition of prior knowledge of leaf chemistry (two alternatives), (2) the choice of RTM (two alternatives), (3) the addition of Gaussian noise to RTM produced training data (four and five alternatives), (4) possibility of using Sun Zenith Angle (SZA) as an additional MLRA training feature (two alternatives), and (5) the choice of MLRA (six alternatives). The features were varied in a full grid resulting in 960 inversion models in order to find the overall impact on performance as well as possible interactions among the features. A combination of a Terrestrial Laser Scanning (TLS) time series with litter-trap derived LAI served as independent validation. The addition of absolute noise had the most significant impact on prediction performance. It improved the median prediction Root Mean Square Error (RMSE) by 1.08 m2 m−2 when 5 % noise was added compared to inversions with 0 % absolute noise. The choice of the MLRA was second most important in terms of median prediction performance, which differed by 0.52 m2 m−2 between the best and worst model. The best inversion model achieved an RMSE of 0.91 m2 m−2 and explained 84.9% of the variance of the reference time series. The results underline the need to explicitly describe the used noise model in future studies. Similar studies should be conducted in other study areas, both forest and crop systems, in order to test the noise model as an integral part of hybrid retrieval workflows.

Highlights

  • Vegetation represents a primary component in Earth’s terrestrial carbon cycle, with respect to its role both as a source of CO2 through respiration and as a sink of CO2 through photosynthesis [1]

  • The general order for a hybrid retrieval workflow is as follows [23,44]: 1. A vegetation Radiative Transfer Models (RTMs) is run in forward mode to create a database of training samples, i.e., biophysical parameters serve as input for the RTM to predict spectral Bidirectional Reflectance Factor (BRF)

  • Together with other missions such as Landsat 7, 8 and future Landsat 9, a characterisation of temporal dynamics in biophysical parameters becomes possible at decametric resolution

Read more

Summary

Introduction

Vegetation represents a primary component in Earth’s terrestrial carbon cycle, with respect to its role both as a source of CO2 through respiration and as a sink of CO2 through photosynthesis [1]. Higher revisit frequency and additional red edge bands are emphasised as potentials for performance advances, when compared to the Landsat missions Agricultural testing campaigns such as SEN3Exp and SicilyS2EVAL offered measurements to explore opportunities for estimating vegetation parameters with spectral observations from Sentinel-2 [12,13,14,15]. Approaches are advancing to make use of the Sentinel-2 open data in terms of biophysical parameter estimation [17,18] All these campaigns and connected studies underlined that Sentinel-2 has high potential for estimation of LAI and Chlorophyll a and b (Cab) in diverse canopies

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.