Abstract

It is well known that the trap-induced performance degradation of microwave GaN-on-SiC HEMTs is proportional to the peak voltages applied at the device's terminals. Considering that RF $\mathbf{GaN}$ switches are subject to high voltages, their characteristics are especially affected by trapping phenomena. This paper describes the GaN switch insertion loss (IL) degradation due to traps. A custom characterization setup is used for the measurement of the switch IL under dynamic voltage stress, typical of the actual operating regime. It is shown that, depending on the applied voltages setting the trap state, an increase of the switch IL up to 60% was measured for a $\pmb{0.25 \mu\mathrm{m}}$ GaN-on-SiC technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.